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Greenhouse gas inventories and emissions reduction programs require robust methods to quantify carbon
sequestration in forests. We compare forest carbon estimates from Light Detection and Ranging (Lidar) data and
QuickBird high-resolution satellite images, calibrated and validated by field measurements of individual trees.
We conducted the tests at two sites in California: (1) 59 km2 of secondary and old-growth coast redwood
(Sequoia sempervirens) forest (Garcia–Mailliard area) and (2) 58 km2 of old-growth Sierra Nevada forest (North
Yuba area). Regression of aboveground live tree carbon density, calculated from field measurements, against
Lidar heightmetrics and againstQuickBird-derived tree crowndiameter generated equationsof carbondensity as
a function of the remote sensing parameters. Employing Monte Carlo methods, we quantified uncertainties of
forest carbon estimates from uncertainties in field measurements, remote sensing accuracy, biomass regression
equations, and spatial autocorrelation. Validation of QuickBird crown diameters against field measurements of
the same trees showed significant correlation (r=0.82, Pb0.05). Comparison of stand-level Lidar height metrics
with field-derived Lorey's mean height showed significant correlation (Garcia–Mailliard r=0.94, Pb0.0001;
North Yuba R=0.89, Pb0.0001). Field measurements of five aboveground carbon pools (live trees, dead trees,
shrubs, coarse woody debris, and litter) yielded aboveground carbon densities (mean±standard error without
Monte Carlo) as high as 320±35Mg ha−1 (old-growth coast redwood) and 510±120 Mg ha−1 (red fir [Abies
magnifica] forest), as great or greater than tropical rainforest. Lidar and QuickBird detected aboveground carbon
in live trees, 70–97% of the total. Large sample sizes in theMonte Carlo analyses of remote sensing data generated
low estimates of uncertainty. Lidar showed lower uncertainty and higher accuracy than QuickBird, due to high
correlation of biomass to height and undercounting of trees by the crown detection algorithm. Lidar achieved
uncertainties of b1%, providing estimates of aboveground live tree carbon density (mean±95% confidence
interval with Monte Carlo) of 82±0.7 Mg ha−1 in Garcia–Mailliard and 140±0.9 Mg ha−1 in North Yuba. The
method that we tested, combining field measurements, Lidar, andMonte Carlo, can produce robust wall-to-wall
spatial data on forest carbon.
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1. Introduction

A growing forest naturally removes greenhouse gases from the
atmosphere and reduces the magnitude of global climate change.
Global vegetation and soils removed carbon from the atmosphere at a
rate (mean±66% confidence interval) of 4.7±1.2 Gt y−1 in 2008,
compared to fossil fuel emissions of 8.7±0.5 Gt y−1 and deforestation
emissions of 1.2±0.7 Gt y−1 (Intergovernmental Panel on Climate
Change [IPCC], 2007; Le Quéré et al., 2009). Parties to the United
Nations Framework Convention on Climate Change (UNFCCC) and
jurisdictions such as the State of California, USA, conduct national and
sub-national greenhouse gas inventories. Furthermore, the UNFCCC
and other institutions have established greenhouse gas emissions
reduction programs with credits for forest conservation, afforestation,
and reforestation. Greenhouse gas inventories and emissions reduc-
tion programs require scientifically robust methods to quantify forest
carbon storage over time across extensive landscapes.

Monitoring forest carbon in forests with high spatial variation of
tree density and species composition poses major challenges (Fahey
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et al., 2009). The financial cost of forest inventory can render it
infeasible as the sole method for estimating the forest carbon of
extensive areas. In addition, forest inventory programs that are
funded sufficiently for large-scale forest carbon monitoring, such as
the Forest Inventory and Analysis (FIA) program of the United States
Department of Agriculture (USDA) Forest Service, use large admin-
istrative areas as units of analysis (Woodbury et al., 2007), masking
local variability.

Remote sensing, calibrated by field measurements, addresses these
challenges.Methods commonly calculate forest carbon as the product of
surface areas of land cover types, classified by satellite systems with
moderate spectral or spatial resolutions, e.g. Landsat and MODIS, and
mass of carbon per unit area (carbon density), derived from field
measurements of trees and allometric equations, summed over all land
cover types (Achard et al., 2004; Blackard et al., 2008; DeFries et al.,
2007; Potter et al., 2008; Saatchi et al., 2007). The number of land cover
types that satellites with moderate spectral or spatial resolutions can
accurately discriminate, generally five to twenty classes (Bartholomé &
Belward, 2005; Loveland et al., 2000; Sánchez-Azofeifa et al., 2009),
limits the possible carbon density of each pixel to a few discrete values.

In contrast to satelliteswithmoderate spectral or spatial resolutions,
high-resolution Lidar and high-resolution satellites such as QuickBird,
IKONOS, WorldView, and GeoEye sense physical dimensions of trees to
which aboveground biomass directly correlates. With these systems,
forest carbon content equals the product of the area and the carbon
density of each pixel, where carbon density is calculated by applying
allometric equations to field measurements of individual trees and
correlated to canopy height metrics estimated by Lidar or tree crown
diameter estimated by high-resolution satellite data. This method
generates raster coverage of the spatial distribution of forest carbon
density with continuous values.

Field research has demonstrated the accuracy of Lidar estimates of
canopy height (Andersen et al., 2006; Magnussen & Boudewyn, 1998;
Næsset, 1997; 2009) and high correlation of Lidar height metrics to
field-measured aboveground biomass (Boudreau et al., 2008; Drake et
al., 2002; Hurtt et al., 2004; Hyde et al., 2006; Lefsky et al., 1999; 2005;
Næsset & Gobakken, 2008) and forest carbon density (Balzter et al.,
2007; Patenaude et al., 2004). Financial and expertise requirements of
Lidar methods have prevented their widespread adoption for forest
carbon monitoring in tropical countries, although it has been tested in
the Brazilian Amazon (Asner, 2009). Lidar has produced more accurate
estimates of forest biomass than Landsat (Lefsky et al., 2001), high
spectral resolution sensors (Lefsky et al., 2001), and synthetic aperture
radar (Sexton et al., 2009). Direct comparison of Lidar tohigh-resolution
satellites for forest carbon monitoring remains an area for further
investigation because these two systems are potential tools for national
Fig. 1. Location of research areas. Background shows aboveground vegetation carbon density
field measurements (Olson et al., 1983), analyzed at 10 km spatial resolution.
greenhouse gas inventories (Bickel et al., 2006) and reducing emissions
from deforestation and degradation (REDD) programs (DeFries et al.,
2007).

Research on high-resolution optical images from QuickBird and
IKONOS has tested algorithms to detect crown diameter and other
tree characteristics in a wide range of forest biomes (Asner et al.,
2002; Clark et al., 2004; Palace et al., 2008; Thenkabail et al., 2004;
Wulder et al., 2004). High-resolution satellites can detect individual
tree crowns but the accurate monitoring of forest carbon has not been
fully demonstrated.

The choice of remote sensing system will influence the levels of
uncertainty in the estimates of forest carbon. To quantify uncertainty
of forest carbon estimates, the IPCC (2006) recommends Monte Carlo
analysis, which reduces uncertainty compared to simple combination
of confidence intervals of equation variables (Mandel, 1984). Research
has applied Monte Carlo analysis to forest carbon at regional
(Chambers et al., 2007) and national (Monni et al., 2007) scales,
although not all forest carbon studies quantify uncertainty.

We have sought to advance the application of remote sensing to
forest carbon monitoring through research that provides new
information on the capabilities of Lidar and high-resolution satellites,
on carbon densities of high-biomass forests, and on uncertainties of
forest carbon estimates. Our research objectives are: (1) to directly
compare forest carbon estimates from Lidar data and QuickBird high-
resolution satellite images, calibrated and validated by field measure-
ments of individual trees, (2) to estimate forest carbon densities in
two high-biomass forests in California, and (3) to quantify, with
Monte Carlo analysis, uncertainties in forest carbon estimates from
uncertainties in field measurements, remote sensing accuracy,
biomass regression equations, and spatial autocorrelation.

2. Methods

2.1. Garcia–Mailliard research area

The Garcia–Mailliard research area (Fig. 1) consists of two separate
units between 38.89° and 38.93° N and 123.32° and 123.55° W: (1)
58 km2 eastern half of the private Garcia River forest and (2) 1 km2

Mailliard Redwoods State Natural Reserve (SNR). Located in the North
Coast Range of California, the area consists of low ridges and shallow
valleys. Garcia River forest is secondary coast redwood forest with
post-harvest stands approximately 20–80 years old. The California
Climate Action Registry has registered a carbon project in Garcia River
forest. Mailliard Redwoods SNR, established in 1945, consists of old-
growth coast redwood forest, although not as tall as old-growth coast
redwood forests further north in California with forest carbon
(Matthews et al., 2000) derived from AVHRR remote sensing (Loveland et al., 2000) and
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densities of 1600–2900 t ha−1, the highest in the world (Busing &
Fujimori, 2005).

2.2. North Yuba research area

The North Yuba research area covers 58 km2 between 39.60° and
39.70° N and 120.76° and 120.86° W in the Tahoe National Forest,
California, USA (Fig. 1). Protected since 1891 as a part of the former
Sierra Forest Reserve, eight watersheds in the northern part of the
Yuba River Old Forest Emphasis Area (USDA Forest Service, 2004b)
form the research area. Mountain ridges and deep creek valleys create
steep topography. Three forest types cover the area: (1) mixed oak
and Douglas-fir forest at lower elevations, (2) mid-elevation mixed
conifer forest, and (3) red fir forest at high elevation. Shrub lands and
scree slopes occur at high elevations.

2.3. Field measurements

Field measurements furnished data to calibrate Lidar and Quick-
Bird estimates of aboveground biomass, assess the accuracy of Lidar
canopy height metrics, directly validate QuickBird-derived tree crown
diameter, and characterize forest types. To compare results to regional
forest inventories of the USDA Forest Service (Christensen et al.,
2008), we used a modified FIA design (USDA Forest Service, 2004a).
Fig. 2. Garcia–Mailliard research area. (a) QuickBird panchromatic sharpened multi-spectral
We estimated the approximate number of field plots (nplots) needed
(Husch et al., 2003):

nplots = t2CV2 1
E

� �2
ð1Þ

where t is the value of Student's t distribution for nplots at P=0.05, CV
is the coefficient of variation (ratio [%] of the standard deviation and
mean of the forest carbon density), and E is the estimated allowable
error (% of the mean). For CV, we used FIA percent sampling error
values (USDA Forest Service, 2009) for redwood forest in the North
Coast region (Garcia–Mailliard) and mixed conifer forest in the
Sacramento Valley region (North Yuba). For E=20%, a common
starting point (Husch et al., 2003), nplots=38 plots (Garcia–Mailliard)
and 26 plots (North Yuba). We established 40 plots in Garcia–
Mailliard and 39 plots in North Yuba. This is greater than the 30
required for a statistical sample (von Storch & Zwiers, 1999) and near
the 40 to 50 needed to calibrate Lidar (Zhao et al., 2009). The cost of
field work constrained the number of plots.

In Garcia–Mailliard, we established a stratified random sample of 40
permanent forest plots, stratified by management history and tree size
(Fig. 2). In Garcia, we placed seven plots at random in each of the four
California Department of Forestry and Fire Protection (2003) Landsat
andfield-determined classes of diameter at breast height (dbh; at height
[h]=1.37 m): dbh≤2.5 cm, 2.5bdbh≤15 cm, 15 cmbdbh≤28,
image, research area perimeters, and field plot locations. (b) QuickBird crown diameter.
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28bdbh≤61. InMailliard,where forest structurewashomogeneous,we
placed 12 plots at random. In North Yuba, we established a systematic
sampleof 36modifiedFIAplots ona1.25 kmgeographic gridoriginating
at 39.70° N, 120.86° W (Fig. 3). We retained three additional plots
established at the beginning of field work off the grid in the most
abundant forest type, for a total sample size of 39 plots. A Trimble
Fig. 3. North Yuba research area. (a) QuickBird panchromatic sharpened multi-spectral
image, research area perimeter, and field plot locations (D=Oak–Douglas-fir, R=red
fir, all others=mid-elevation mixed conifer). (b) QuickBird crown diameter.
Pathfinder ProXT differential GPS receiver recorded plot center
coordinates with an accuracy of b1 m.

Each modified FIA plot is a cluster of four circular 17.95 m radius
annular plots with one central 0.1 ha annular plot, three satellite 0.1 ha
annular plots, four 7.32 m subplots, and one 2.77 m radius microplot
(Fig. 4). Each modified FIA plot also contains three 17.95 m long
transects from the cluster center, with the first transect positioned at a
random azimuth and the others at 60° and 120° from the first transect.
InNorth Yuba, the 36 plots on the grid include all four annular plots. The
three non-grid plots have the central annular plot, but no satellite
annular plots. InGarcia–Mailliard, all 40plots contain four annular plots.

Following FIA methods, we have only used data from the central
annular plots for the forest carbon estimates. In the central annular
plots, we tagged (at h=1.5 m) and measured every tree of
dbh≥19.5 cm, the minimum diameter for dominant and co-dominant
canopy conifers in the region (van Mantgem & Stephenson, 2005). For
hardwood species in Garcia–Mailliard central annular plots, we
measured trees of dbh≥29.5 cm, which we observed was the typical
minimum diameter for dominant canopy hardwoods. We recorded
species and measured dbh (at h=1.37 m). For all of the trees of
dbh≥19.5 cm in one quadrant selected at random, we also measured
height, live crown vertical length, and crown horizontal diameter in the
four cardinal directions. In the central subplots, we located each tree of
dbh≥12.5 cm (Garcia–Mailliard) or dbh≥5 cm (North Yuba) (thresh-
olds fromUSDA Forest Service (2004a)) and dbhb19.5 cm, recorded the
species, and measured dbh. For the first ten trees of this size starting
from the north, we also measured total height, live crown length, and
crown width in the four cardinal directions. We measured a non-
random sample of additional trees of this size to ensure representation
of all tree species.

To directly validate QuickBird tree crown diameters, we randomly
selected 74 trees (Garcia–Mailliard) and 26 trees (North Yuba) of
dbh≥19.5 cm, recorded the direction and range of the trees from the
plot center, and measured the eight ordinal crown radii.

To assess whether Lidar height metrics at the stand level
accurately reflected canopy heights in the field, we calculated Lorey's
mean height (hL, m), for each central annular plot:

hL = ∑
all trees

gh= ∑
all trees

g ð2Þ

where g is the basal area (m2) and h is the height (m) of each live tree of
dbh≥19.5 cm. For those trees with unmeasured heights, we derived 17
species-specific equations of h as a function of dbh (Appendix A),
selecting equationswith the lowest Akaike's Information Criterion (AIC;
Burnham & Anderson, 1998). Measured and calculated heights showed
significant correlation to dbh (Garcia, r=0.81, Pb0.0001, n=262;
Maillard, r=0.93, Pb0.0001, n=102; North Yuba, r=0.89, Pb0.0001,
n=412).

We measured additional parameters to quantify carbon in small
trees, coarse woody debris, and shrubs. In the microplots, we located
each treeof dbhb12.5 cm(Garcia–Mailliard) or dbhb5 cm(NorthYuba)
and recorded species and dbh to the nearest centimeter.We tallied trees
of hb1.37 m into two classes (hb0.5 m, 0.5 m≤hb1.37 m). Along each
transect, we measured coarse woody debris by locating each piece of
wood of diameterN19.5 cm and lengthN1 m and recorded decay class,
measured length of intersection, diameters at intersection and small and
large ends, and total length. For shrubs, we located patches of h≥1 m
and intersection length≥1 m, recorded species, and measured length
and height at the beginning, middle, and end. In North Yuba, we
measured fire fuels along the inner 12.62 m length of the transect,
following the protocol of Brown (1974).

2.4. Lidar

From September 14 to 17, 2005, we collected Lidar data using an
Optech ALTM 2050 system on an airplane flying at an altitude of
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800 m and average velocity of 260 km h−1. The ALTM 2050 acquired
up to three returns per pulse at a pulse frequency of 50 kHz, point
density of 1shot m−2, scan frequency of 38 Hz, and a maximum scan
angle of 15°, creating a swath width of 580 m. Optech, Inc. rates the
root mean square error (RMSE) precision of individual point locations
surveyed by the ALTM 2050 as ±15 cm vertical and ±50 cm
horizontal. In steep areas, point locations may be less precise due to
distortion of the returned Gaussian envelope.

Lidar gives the elevation of each scanned point, either on the tree
canopy or the ground surface. Application of a progressive morpho-
logical filter (Zhang et al., 2003) to Lidar data removed non-ground
points through stepwise detection of sharp changes in elevation that
indicated the presence of individual trees. This automated iterative
method progressive removed changes in elevation that occurred at
scales smaller than the scale of each filter in a series. We produced a
digital elevation model (DEM) of the ground surface at a spatial
resolution of 2 m (Garcia–Mailliard) or 5 m (North Yuba).

We estimated canopy height as the difference between the Lidar-
detected elevation of a point and the derived DEM elevation under
that point. Because the 1shot m−2 spatial density is sparse, it is
unlikely that the shots fell on the exact tops of trees. This prevented
calibration of Lidar data to individual trees. Therefore, we generated
canopy height metrics at the stand level, at a spatial resolution of
25 m, the width of a square pixel that would fit entirely inside a
17.95 m radius circular field plot. We later resampled 25 m Lidar-
derived biomass data to a spatial resolution of 31.8 m, the width of a
square pixel with the same surface area as a 17.95 m radius circular
field plot. Using all Lidar points within each 25 m pixel, we calculated
mean height, quadratic mean height, maximum height, and height
percentiles at 10% intervals. The numerical values of these height
metrics are not intended to exactly match the values of the
corresponding heights of the actual canopy. Instead, the Lidar canopy
height metrics comprise variables for the derivation of regression
equations of aboveground biomass as a function of Lidar data.

Because the sparse density of the Lidar points prevented validation
of Lidar data against measurements of individual trees, we assessed
Lidar accuracy through linear regression (Garcia–Mailliard) or
stepwise multiple regression (North Yuba) of Lidar canopy height
metrics to hL of the 17.95 radius circle of each central annular plot, a
method developed by Næsset (1997). Because Lidar laser pulses
sample the forest canopy with a probability of reflection proportional
to the area of the exposed tree crowns, and because tree crown area is
proportional to tree basal area, the correlation of Lidar height metrics
to hL of field plots indicates whether Lidar produces accurate indices of
the actual height of the forest canopy.
2.5. QuickBird

The QuickBird satellite acquired cloud-free images of the Garcia–
Mailliard research area at 12:16 PM Pacific Daylight Time (PDT) on
August 7, 2005 (Fig. 2a) and the North Yuba research area at 12:10 PM
PDT on August 2, 2005 (Fig. 3a) from a sun-synchronous orbital
altitude of 450 km. QuickBird captured images composed of one band
of panchromatic data at 0.6 m spatial resolution and four bands of
multi-spectral data at 2.4 m spatial resolution, with each band at
11 bit data depth. Digital Globe, Inc. provided orthorectified QuickBird
data with a horizontal accuracy (RMSE) of 6.2 m.

To classify forest and non-forest areas, we first calculated the
normalized difference vegetation index (NDVI; Tucker, 1979). We
conducted a K-means unsupervised classification on the QuickBird
multi-spectral bands and NDVI. Forest areas showed a mean digital
number (DN) value≥102 (out of 2048).

For forest areas, we used an automated crown detection method to
locate tree crowns and determine crowndiameters (Palace et al., 2008).
The algorithm outlines tree crowns by iterative local maximum filtering
of the panchromatic band and transect determination of local minima.
Because the top of the crown is typically the most brightly illuminated
part of a tree, the algorithm iteratively sets crown centers at local
brightnessmaxima.Next, anautomated sub-routine runs transects from
each brightness maximum outward in 360 ordinal directions (one per
degree) and terminates each transect when a change in pixel-to-pixel
brightness exceeds a user-defined threshold. This threshold is often
image-dependent and cannot be readily generalized for all image types,
scene brightness levels, and sun-ground-sensor geometries. After
tracing the edge of each tree crown, the algorithm calculates the mean
diameter of each crown.

Because of the computational demand of the automated crown
detection method, we divided the research areas into 1 km×1 km tiles,
ran the algorithm, and recompiled the tiles into full images. Prior to
executing the code on the entire image, we conducted multiple runs
on the entire Mailliard Redwoods SNR and on one North Yuba image
tile to test the sensitivity of the crown detection method to NDVI forest
mask values and transect termination thresholds. Based on these
tests and on extensive manual interpretation of the imagery, we set the
NDVI forest mask to 0.45 and termination threshold to 2 for Garcia–
Mailliard and NDVI forestmask to 0.6 and termination threshold to zero
for North Yuba. Comparison of the crown detection test results with the
panchromatic images showed that crowndetectionswith centroid pixel
values of DNb350 were often false, so we removed those detections.

The crown delineation algorithm produced vector files with each
tree crown as a separate feature. We quantified accuracy by directly



1566 P. Gonzalez et al. / Remote Sensing of Environment 114 (2010) 1561–1575
validating QuickBird-estimated crown diameter against field-mea-
sured crown diameter. We conducted linear regression of QuickBird-
estimated crown radius (dependent variable) against field-measured
crown radius (independent variable) for 100 trees measured in the
field and precisely located in the QuickBird images. We used the
longest field-measured crown radius of eight ordinal radii because
the crown detection algorithm estimates tree diameters based on the
longest ordinal transect.
2.6. Carbon density from field measurements

From field measurements, we calculated the mass per unit area
(carbon density) in each plot cluster of aboveground live biomass
(trees and shrubs), aboveground dead matter (trees and coarse
woody debris), and litter. For Garcia–Mailliard, we calculated the
carbon density of aboveground live biomass and dead matter carbon
pools, but not litter.

We used species-specific allometric equations (Busing & Fujimori,
2005; Jenkins et al., 2003, 2004; Means, 2005; Pillsbury & Kirkley,
1984; Ter-Mikaelian & Korzukhin, 1997; Wensel & Krumland, 1983;
Westman, 1987) to estimate tree biomass from measurements of
diameter and height (Appendix A). We selected allometric equations
derived in forest types, seral classes, and tree sizes most similar to our
data. When necessary, we used wood specific gravity (Jenkins et al.,
2004) to convert tree wood volume to mass.

The allometric equations for California black oak (Quercus kelloggii),
canyon live oak (Quercus chrysolepis), Douglas-fir (Pseudotsuga menzie-
sii), Pacific madrone (Arbutus menziesii), and westernwhite pine (Pinus
monticola) required height in addition to dbh.Weused height equations
from Larsen and Hann (1987) for oaks and madrone and from Hanus
et al. (1999) for western white pine. With field measurements of 37
trees, we verified that the oak and madrone equation accurately
calculated height. Field measurements of six trees showed that the
western white pine equation overestimated height by 45%. Therefore,
we reduced calculated heights of western white pine by 45% before
applying biomass allometric equations.

For three species, we derived regression equations of h as a function
of dbh measured at h=1.37 m (Table 1a–c). The sample for these
equations included allmeasured trees inGarcia andMailliard combined,
Table 1
Allometric equations derived from field measurements and remote sensing.

Tree height
(a) Lithocarpus densiflorus: h=(67.5499 dbh)/(97.7877+dbh)
(b) Pseudotsuga menziesii: h=(88.01 dbh)/(108.03+dbh)
(c) Sequoia sempervirens: h=(110.371 dbh)/(148.152+dbh)

Shrub biomass
(d) bshrub=−0.8811+1.23Acanopy

Lidar biomass
(e) Garcia–Mailliard: Blive trees=6.1660695 hq+0.5045322hq2

(f) North Yuba: Blive trees=27.488705hq−46.41089 h10+48.094323h20-45.54945h30
+61.757518h40−36.13169h50−12.5304

QuickBird biomass
(g) Garcia: ln(btree⁎106)=8.573dcrown

0.2078

(h) Mailliard: ln(btree⁎106)=8.82dcrown
0.2217

(i) North Yuba: ln(btree⁎106)=8.7719dcrown
0.2492

Variables: Acanopy=area of shrub canopy (m2), AIC=Akaike's Information Criterion, bshrub=
(Mg tree−1), Blive trees=aboveground live tree biomass density (Mg ha−1), dcrown=crown d
hj=height at the jth percentile of points in the Lidar pixel (m), hq=quadratic mean height
determination from bivariate regression, R2=coefficient of determination frommultivariate
(Mg tree−1).
whereas the height equations for the Lidar accuracy assessment were
developed separately for Garcia and Mailliard (Appendix A).

Total aboveground tree biomass density (Blive trees, Mg ha−1) equals:

Blive trees = ∑
all trees btree

Aplot

 !
1Mg
103 kg

� �
ð3Þ

where btree is the aboveground biomass (kg) of a tree calculated from
the allometric equations, and Aplot is the area (ha) of the annular plot,
subplot, or microplot where the tree was counted. Blive trees includes
all live trees of all diameters.

To develop an equation of shrub biomass in North Yuba as a
function of shrub area, we selected ten greenleaf manzanita
(Arctostaphylos patula) and huckleberry oak (Quercus vaccinifolia)
shrubs that represented the range of growth forms. For each stem, we
measured canopy area, height, and occupied volume, then cut and
weighed the wet mass of all aboveground biomass. We also collected
and dried three biomass samples to determine moisture content.
Among different predictors of dry mass, canopy area yielded the
biomass regression equation with the most significant probability
(Table 1d). Shrub aboveground biomass density (Bshrubs, Mg ha−1) for
each annular plot equals:

Bshrubs =
1

Aannular

� �
−0:8811 + 1:23

∑
all shrubs

lintersection

ltransect

1m
102 cm

� �
Aannular

0
BBB@

1
CCCA 1Mg

103 kg

� �

ð4Þ

where Aannular is the annular plot area of 0.1012 ha, lintersection is the
length (cm) of the intersection of the piece with the transect, and
ltransect is the transect length of 17.95 m.

Because most dead trees did not have many attached branches, we
calculatedmass of dead trees as 70% of the equivalent biomass of a live
tree. The mass per unit area of dead trees (Mdead trees, Mg ha−1) is:

Mdead trees = ∑
all dead trees 0:7 btree

Aplot

 !
1Mg
103 kg

� �
: ð5Þ
r2 R2 P AIC RMSE SE n

0.42 b0.0001 105
0.89 b0.001 91
0.80 b0.001 106

0.91 0.026 10

0.86 0.009 98 40
0.80 0.0001 123 39

0.55 7.8 2.2 261
0.59 3.1 2.8 102
0.73 −0.8 3.0 331

aboveground biomass of a shrub (kg shrub−1), btree=aboveground biomass of a tree
iameter (m), dbh=diameter at breast height (at height=1.37 m) (cm), h=height (m),
of Lidar canopy points in a pixel (m), n=sample size, P=probability, r2=coefficient of
regression, RMSE=rootmean square error (Mg ha−1), SE=Standard error of themean
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For coarse woody debris (CWD), we calculated the mass of each
measured piece (mpiece, kg; Harmon & Sexton, 1996):

mpiece =
ρCWDlpiece

3

� �
1kg
103 g

� �

× ½π dlarge
2

� �2

+
dsmall

2

� �2
 !

+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π

dlarge
2

� �2

+
dsmall

2

� �2
 !vuut �

ð6Þ

where ρCWD is the wood density (0.50 g cm−3 for weathered wood,
0.32 g cm−3 for intermediate decayed wood, 0.17 g cm−3 for rotten
wood), lpiece is the length of the piece (cm), dlarge is the diameter of the
large end (cm), and dsmall is the diameter of the small end (cm). CWD
mass per unit area (MCWD, Mg ha−1) is:

MCWD = ∑
all pieces π

2lintersection

� �
102 cm

m

 !
mpiece

ltransect

� �
1Mg
103 kg

� �
104m2

ha

 !
:

ð7Þ

For litter, we used the methods of Brown (1974) to calculate mass per
unit area (Mlitter, Mg ha−1).

Density of aboveground biomass and dead matter (Baboveground,
Mg ha−1) is:

Baboveground = Blive trees + Bshrubs + Mdead trees + MCWD + Mlitter: ð8Þ

We calculated Baboveground and Blive trees for each plot and themean and
standard error for each forest type. We converted Baboveground and
Blive trees to carbon units:

Ccomponent = fCBcomponent ð9Þ

where Ccomponent is the carbon density (Mg ha−1) of the aboveground
component or live tree pool, fC is the carbon fraction of biomass
(0.47 g carbon [g biomass]−1; McGroddy et al., 2004), Bcomponent is
the aboveground or live tree biomass density (Mg ha−1).

2.7. Carbon densities from Monte Carlo analyses

We used aMonte Carlo approach to quantify the uncertainty in the
final estimates of Clive trees, separately for the field measurements,
Lidar, and QuickBird. We evaluated the major sources of uncertainty
identified in IPCC guidelines (Aalde et al., 2006) and by Wang et al.
(2005), including field measurement error, remote sensing accuracy,
biomass regression equations, and spatial autocorrelation.

For each analysis, we calculated a mean value of Clive trees for each
sample unit (field plot or pixel), generated 100 (remote sensing) or
1000 (field measurements) realizations of Clive trees using normally
distributed random values of standard error (SE) of individual variables
in the equations of Clive trees, and calculated the mean and confidence
interval of Clive trees for the forest parts of each research area.
Table 2
Forest characteristics from field measurements. Counts are given for live and dead trees (dbh
diameters) measured in the satellite annular plots, central and satellite subplots, and micro
(mean±SD) are calculated from central and satellite annular plots.

Plots Trees counted Species
richness

Diameter (d

(dbh≥19.5

Central Satellite Central Other Tree Shrub Live

(plots) (trees) (species)
(cm)

Garcia 28 84 1008 1290 10 2 38±15
Mailliard 12 36 390 736 9 1 55±31
North Yuba 39 108 1523 1412 11 10 40±21
We analyzed the remote sensing data at two spatial resolutions:
25 m, the width of a square that would fit inside a 17.95 m radius
circular field plot, and 31.8 m, the width of a square with the same
surface area as a 17.95 m radius circular field plot.

2.7.1. Monte Carlo analyses of field measurement data
In the analyses of field data, we explicitly included the following

sources of error: (1) field measurement errors of tree diameter, (2)
statistical uncertainty of tree allometric equations, and (3) sampling
error of Blive trees within each research area. We generated 1000 real-
izations of btree for each tree, adding error terms for (1) and (2) to the
original values of dbh and btree, respectively:

b̂tree = f dbh + XdbhSEdbhð Þ + XallometricSEallometric ð10Þ

where the hat symbol “^” denotes the form of a variable that includes a
modeledestimate of error, f(x) denotes functionof x,Xvariable is a random
number (different for each variable) from a normal distribution with
mean=0 and standard deviation (SD)=1, SEdbh is the standard error of
dbh, and SEallometric is the standard error of each allometric equation.We
estimated SEdbh as the diameter error from repeated measures of a
randomsample of 169 trees (19 cmbdbhb148 cm). SEdbh equaled 0.027,
expressed as the relative RMSE of the difference between the initial
diameter measurement and the repeated measure. For SEallometric, we
used the SE of regression of each tree allometric equation. In effect,
these realizations simulated the potential results of 1000 field cam-
paigns. For each plot, we calculated 1000 realizations of Blive trees with
Eq. (3). We then calculated 1000 realizations of Clive trees for each plot,
adding a term for the sampling error of Blive trees within each research
area to the mean value of Blive trees for each plot:

Ĉ
plot
live trees = fC B̄

plot
live trees + Xplot

live treesSE
research area
live trees

� �
ð11Þ

where the overbar symbol “¯” denotes the mean of a variable and
SElive trees is a function of the sample design of each research area
(Woolley et al., 2007). The mean Clive trees for each research area is:

C̄research area
live trees =

1
n

� �
∑

all plots 1
1000

� �
∑

all realizations
Ĉ
plot
live trees

 !
ð12Þ

where n is the number of plots. The 95% confidence interval (CI)
equals:

CI =
C97:5−C2:5

2
ð13Þ

where C97.5 and C2.5 are the 97th and 2.5th percentiles, respectively,
of the 1000 realizations of the mean Clive trees for each research area.

To compare uncertainties of Lidar and QuickBird, we calculated:

Uncertainty =
CI

C̄research area
live trees

: ð14Þ
≥19.5 cm) tagged andmeasured in the central annular plots and live and dead trees (all
plots. Diameters (mean±SD) are calculated from central annular plots. Tree densities

bh) Tree densities Tree densities Shrub
cover
(%)

Shrub
maximum
height
(m)

cm) (dbh≥19.5 cm) (dbhb19.5 cm)

Live Dead Live Dead

(trees ha−1)

329±153 8±19 1700±1400 180±500 11 3.5
333±157 20±23 860±800 160±270 b1 2.1
326±172 60±66 1700±1400 300±400 20 2.8



Table 3
Forest characteristics from remote sensing. For Lidar, forest includes areas where h50N the maximum height of shrubs measured in the field plots (Table 2). For QuickBird, forest
includes areas where of dcrownNalgorithm detection threshold (Garcia–Mailliard 3 m, North Yuba 2.4 m).

Lidar Lidar QuickBird Lidar QuickBird

Elevation
(m)

Forest area Maximum height
(mean±SD)
(m)

Trees
delineated
(trees)

Tree density Crown diameter
(mean±SD)
(m)

25 m 31.8 m 25 m 31.8 m 25 m 31.8 m

(% of research area) (trees ha−1)

Garcia 62–679 95 95 97 98 29±5 847 019 150 148 8.3±3.8
Mailliard 317–556 99.8 99.7 92 96 53±9 8776 96 92 9.9±4.1
Garcia–Mailliard 62–679 95 95 97 98 30±6 855 795 149 147 8.3±3.8
North Yuba 1061–2172 72 72 88 91 34±13 421 137 84 80 8.2±2.0
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Although we designed the field plot networks in this research
primarily to calibrate and validate the remote sensing data, we have
calculated mean forest carbon densities and uncertainties at the level
of the research area for qualitative comparisons with Lidar and
QuickBird.

2.7.2. Monte Carlo analyses of Lidar data
In the analyses of Lidar data, we explicitly included the following

sources of error: (1) fieldmeasurement biomass uncertainty, calculated
above, (2) statistical uncertainty of regression equations of biomass as a
function of Lidar heightmetrics, and (3) spatial autocorrelation of Lidar-
derived estimates of biomass density.

To calculate carbon density from Lidar data, we used stepwise
multiple regression to develop equations of fieldmeasurement-derived
Fig. 5. Garcia–Mailliard research area. (a) Lidar maximum canopy height. (b) Abovegr
aboveground live tree biomass (Blive trees) as a function of Lidar-derived
height metrics. Table 1e–f gives the Lidar biomass regression equations
with the best fit.

We propagated the uncertainty of field plot biomass estimates
through the Lidar biomass regression equations by using the 1000
realizations of Blive trees for each field plot cluster to generate 1000
realizations of each equation and calculate the RMSE of the median of
the 1000 equation realizations. This error propagation integrated the
effect of field errors into the Lidar uncertainty estimates. Applying the
Lidar biomass regression equations (Table 1e–f) to the Lidar height
metrics, we calculated the mean Blive trees of each 25 m pixel in each
research area. We used nearest neighbor resampling on mean Blive trees

at 25 m spatial resolution to generate a separate raster file of mean
Blive trees at 31.8 m spatial resolution.
ound live tree carbon, from field measurements, Lidar, and Monte Carlo analyses.



Fig. 6. North Yuba research area. (a) Lidar maximum canopy height. (b) Aboveground
live tree carbon, from field measurements, Lidar, and Monte Carlo analyses.
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For each research area and each spatial resolution, we calculated
100 realizations of Clive trees of each pixel, adding to the mean value of
Blive trees a term for the combined field and regression errors and
another term for spatial autocorrelation:

Ĉ
pixel
live trees = fC½B̄pixel

live trees + Xfield + regressionRMSEfield + regression

� �
+ XautocorrelationjIlocaljRMSEfield + regression

� ��
ð15Þ

where RMSEfield+regression (Mg ha−1) is the RMSE of themedian of the
1000 equation realizations and Ilocal is local Moran's I, an index of
spatial autocorrelation that varies from 1 (complete positive corre-
lation) to 0 (no correlation) to −1 (complete negative correlation)
(Anselin, 1995), calculated for the mean Blive trees of each pixel at a lag
of one pixel. Calculation of the spatial autocorrelation term follows the
method of Barrett et al. (2001). A lag of one pixel produces the highest
value of Ilocal and, therefore, the highest estimate of uncertainty. We
also calculated global Moran's I (Iglobal; Anselin, 1995) for each entire
research area.

The mean Clive trees for each research area is:

C̄research area
live trees =

1
n

� �
∑

all pixels 1
100

� �
∑

all realizations
Ĉ
pixel
live trees

 !
ð16Þ

where n is the number of pixels in forest areas (height [m] at the 50th
percentile of points in the Lidar pixel (h50)Nmaximum height of
shrubs measured in the field inventories) of each research area. We
then calculated CI (Eq. (13)), and uncertainty (Eq. (14)).

2.7.3. Monte Carlo analyses of QuickBird data
In the analyses of QuickBird data, we explicitly included the

following sources of error: (1) crown delineation sensitivity to NDVI
forest mask values and transect termination thresholds, (2) crown
delineation accuracy based on validation of QuickBird crown estimates
against field measurements, (3) statistical uncertainty of regression
equations of biomass as a function of crown diameter, and (4) spatial
autocorrelation of QuickBird-derived estimates of biomass density.

To calculate carbon density from QuickBird data, we developed
allometric equations of aboveground biomass of a tree (btree, g tree−1)
as a function of crown diameter from field measurements of trees in
central annular plots, separately for Garcia, Mailliard, and North Yuba
(Table 1g–i). We estimatedmodel parameters with likelihoodmethods
(Canham & Uriarte, 2006; Edwards, 1992), quantifying the strength of
alternative functional formswithAIC. In general, biomass increaseswith
height and crown diameter, although we were uncertain of the exact
form of the best equation and therefore compared various monoton-
ically increasingmodels and saturatingmodels.We fit parameters using
a simulated annealing approach to avoid restrictions in the error distri-
bution associated with least squares fitting. We used AIC to compare
models and account for a variable number of parameters.

Applying theQuickBird biomass equations (Table 1e–f) to the crown
diameter (dcrown,m)of each tree delineated from theQuickBird data,we
calculated btree, for every tree.Wedetermined the sumof the number of
trees and the sum of tree biomass for each 25m and, separately, each
31.8 m pixel, and calculated tree density (N, trees ha−1) and Blive trees of
each pixel. We estimated the standard error of Blive trees of each pixel
(SEfield+QuickBird, Mg ha−1) by applying the QuickBird biomass
equations (Table 1e–f) to the standard errors of crown delineation
and adding the standard error of the QuickBird biomass equations that
were derived from field data:

SEfield + QuickBird = N ½ 1Mg
106 g

� �
Exp α SEdetect + SEvalidð Þβ

� �
+ SEallometric�

ð17Þ
where Exp(x) denotes ex, α β, and SEallometric are the allometric
coefficients, exponents, and standard errors (Mg), respectively, from
the QuickBird biomass equations (Table 1g–i), SEdetect is the standard
error of crown delineation (m) determined by sensitivity analysis of
NDVI forest mask values and transect termination thresholds, and
SEvalidation is the standard error of crown delineation (m) determined
by validation of QuickBird crown estimates against field measure-
ments. The SEallometric term integrates the effect of field errors into the



Table 4
Aboveground forest carbon densities (Mg ha−1) from field measurements, with standard errors of the mean calculated without Monte Carlo. Litter was not measured in Garcia–
Mailliard.

Research
area

Forest type Live trees Shrubs Dead trees Coarse
woody debris

Litter Total n

Mean SE Mean SE Mean SE Mean SE Mean SE Mean SE

Garcia Secondary redwood 100 6.1 0.3 0.1 3 3.3 3 0.7 – – 100 7.5 28
Mailliard Old-growth redwood 310 32 0 0 8.3 2.3 2.6 1.0 – – 320 35 12
North Yuba Oak and Douglas-fir 210 36 0.5 0.3 10 5.9 1.3 1.2 37 7.7 260 51 6
North Yuba Mid-elevation mixed conifer 190 3.4 1.1 0.2 19 4.7 2.0 0.6 49 5.4 260 14 30
North Yuba Red fir 360 80 0 0 58 16 8.5 3.2 81 24 510 120 3

Table 5
Spatial autocorrelation of mean biomass density (Moran's I; Anselin, 1995).

Iglobal Maximum Ilocal

Lidar QuickBird Lidar QuickBird

25 m 31.8 m 25 m 31.8 m 25 m 31.8 m 25 m 31.8 m

Garcia–Mailliard 0.94 0.92 0.29 0.40 0.058 0.058 0.057 0.061
North Yuba 0.99 0.98 0.37 0.50 0.004 0.004 0.001 0.001
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QuickBird uncertainty estimates. We also calculated Ilocal for Blive trees

of each pixel at a lag of one pixel, and Iglobal for each research area.
For each research area and each spatial resolution, we calculated

100 realizations of Clive trees of each pixel, adding to the mean value of
Blive trees a term for the combined field and QuickBird errors (Eq. (17))
and another term for spatial autocorrelation:

Ĉ
pixel
live trees = fC½B̄pixel

live trees + Xfield + QuickBirdSEfield + QuickBird
� �

+ XautocorrelationjIlocaljSEfield + QuickBird
� ��:

ð18Þ

The Monte Carlo equations for Lidar (Eq. (15)) and QuickBird
(Eq. (18)) have the same form. We calculated the mean (Eq. (16)),
CI (Eq. (13)), and uncertainty (Eq. (14)) of the 100 realizations of Clive
trees, for forest areas (dcrown≥detection limit of the crown delineation
algorithm).

3. Results

3.1. Field measurements

Table 2 presents results from field measurements, including trees
counted, species richness, tree diameters, tree densities, and shrub
cover. Coast redwood was the most abundant species in Garcia,
tanoak (Lithocarpus densiflorus) the most abundant in Mailliard, and
Douglas-fir was the third most abundant overall (Appendix A). In
North Yuba, white fir (Abies concolor) was most abundant and red fir
(Abies magnifica), Douglas-fir, and sugar pine (Pinus lambertiana)
were the next most abundant (Appendix A). Six plots fell in mixed
oak–Douglas-fir forest (N90% of trees were oak or Douglas-fir), 30
plots fell in mid-elevation mixed conifer forest, and three plots fell in
Table 6
Aboveground live tree carbon densities and uncertainties from Monte Carlo analyses of fiel

Research area Forest type Field measurements

Mean 95% CI Uncert
(Mg ha−1) (Mg ha−1) (%)

Garcia Secondary redwood 97 27 27
Mailliard Old-growth redwood 310 130 42
Garcia–Mailliard All 100 24 24
North Yuba All 200 90 44
red fir forest (N90% of trees were red fir) (Fig. 3a). Appendix A lists the
species of shrubs or trees growing in shrub form that we recorded.
Table 1g–i gives the allometric equations that we derived of biomass
as a function of crown diameter.
3.2. Lidar

Table 3 presents results from Lidar, including ground elevation,
canopy height, and forest area. The tree canopy in Mailliard was
nearly twice as high, on average, as the tree canopy in Garcia (Fig. 5).
In North Yuba, the tallest trees occurred in the lower elevations of the
Empire Creek watershed in the east part of the area and in high-
elevation red fir forest in the west part of the area (Fig. 6). Table 1e–f
gives the regression equations derived for biomass as a function of
Lidar height metrics. The form of the North Yuba equation is a height
variable refined bymeasures of the vertical distribution of the canopy.
The bimodal distribution of canopy heights in the Garcia–Mailliard
data rendered percentile heights less accurate indicators of biomass
than quadratic mean height. For the assessment of Lidar accuracy,
linear regression of hL of each central annular plot in Garcia–Mailliard
against Lidar canopy height metrics showed significant correlation
(r=0.94, Pb0.0001, n=40). In North Yuba, stepwise multiple
regression of hL of each central annular plot against Lidar canopy height
metrics showed significant correlation (R=0.89, Pb0.0001, n=39).
3.3. QuickBird

Table 3 presents results from QuickBird, including number of trees
delineated, tree densities, crown diameters, and forest area. Crowns in
Mailliard were, on average, wider than crowns in Garcia (Fig. 2b). In
North Yuba, wider crowns occurred in the mixed oak–Douglas-fir
forests of the southeast part of the area (Fig. 3b). Higher tree densities
occurred on southern aspects. Sensitivity analyses of NDVI forestmask
values and transect termination thresholds on the 1 km2 test areas
showed an SE of 0.71 m per crown (Garcia–Mailliard) and 0.66 m per
crown (North Yuba). Validation of QuickBird crown diameters against
field measurements showed significant correlation (Garcia–Mailliard
r=0.82, Pb0.05, SE=1.1 m, n=74; North Yuba r=0.82, Pb0.05,
SE=0.52 m, n=26).
d measurements and remote sensing data at spatial resolutions of 25 m and 31.8 m.

Lidar (25 m)

ainty n Mean 95% CI Uncertainty n
(plots) (Mg ha−1) (Mg ha−1) (%) (pixels)

28 80 0.7 0.8 88,643
12 200 4.1 2 1606
40 82 0.6 0.8 90,249
39 140 0.8 0.6 66,606
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3.4. Carbon density from field data

Table 4 gives carbon density for each aboveground carbon pool. In
Garcia–Mailliard, carbon density was greater in old-growth coast
redwood than secondary coast redwood by a factor of three. In both
research areas, shrubs and coarse woody debris contained only small
fractions of Caboveground. In North Yuba, the fraction of Caboveground in
live trees varied inversely with elevation, the opposite of the observed
increase with elevation of the fraction of Caboveground in dead trees.
Litter in North Yuba contained one-fifth of Caboveground. Appendix A
gives the fraction of Clive trees in each area, by species.

3.5. Carbon densities from Monte Carlo analyses

Table 5 gives the spatial autocorrelation indices used in the Monte
Carlo analyses. Table 6 gives aboveground live tree carbon densities
and uncertainties from the field measurement, Lidar, and QuickBird
Monte Carlo analyses. Uncertainties for Lidar were b1% for the two
research areas, lower than for QuickBird and field measurements.
Forest carbon density was substantially higher in the old-growth
stands of Mailliard than the recovering secondary stands of Garcia
(Fig. 5b). The highest forest carbon densities in North Yuba occurred
in the taller stands in the southeast parts of the area and in some high-
elevation red fir stands (Fig. 6b). Carbon density estimates did not
differ appreciably between the 25 m and 31.8 m analyses. Uncertainty
estimates at 31.8 m spatial resolution were slightly higher (∼0.1%)
than uncertainty estimates at 25 m for the two research areas.

Clive trees for Garcia with Monte Carlo error propagation (Table 6)
differed slightly from the simple mean Clive trees values (Table 4) due to
the random sampling of theMonte Carlo approach. As expected,fits and
uncertainties of the Lidar-derived estimates of Blive trees became worse
when we propagated field data uncertainty through the Lidar biomass
equations (Table 1e–f). For Garcia–Mailliard (Table 1e), R2 decreased
from 0.86 for the original equation to 0.83 for the median of the 1000
realizations (range 0.70–0.92). The RMSE increased from 98Mg ha−1

for the original equation to a median of 184 Mg ha−1 for all 1000
realizations (range 95–364 Mg ha−1). For North Yuba (Table 1f), R2 for
both the original equation and the median of the 1000 realizations was
0.80, but R2 for individual iterations ranged from 0.66 to 0.91. RMSE
increased from 123 Mg ha−1 for the original equation to a median of
205 Mg ha−1 for all 1000 realizations (range 123–437 Mg ha−1).

4. Discussion

4.1. Uncertainty estimates

Large sample sizes (N40,000 pixels) in the Monte Carlo analyses of
both remote sensing systems generated low estimates of uncertainty.
Lidar produced slightly lower uncertainties than QuickBird, consistent
with a different comparison of Lidar and QuickBird (Hyde et al., 2006).
When calibrated by field measurements and analyzed with a Monte
Carlo approach, Lidar can provide forest carbon estimates with
uncertainties lower than most other existing remote sensing systems,
which generally produce uncertainties up to 15% (Lu, 2006). Lidar
QuickBird (25 m) Lidar (31.8 m)

Mean 95% CI Uncertainty n Mean 95% CI
(Mg ha−1) (Mg ha−1) (%) (pixels) (Mg ha−1) (Mg ha−1)

70 1.2 2 90,164 80 0.7
180 8.5 5 1478 200 7.1
71 1.2 2 91 642 82 0.7

140 1.0 0.7 80,880 140 0.9
uncertainties were lower than the 4% to 22% uncertainties of FIA forest
carbon estimates for California forests (Christensen et al., 2008).
Nevertheless, only field measurements made possible the calibration
and validation of the remote sensing data and the quantification of the
3–30% of total aboveground biomass in shrubs, dead trees, coarse
woody debris, and litter.

Spatial autocorrelation of biomass was high at the level of the
research area (Iglobal). This was expected because high-biomass areas
are more likely to be located near other high-biomass areas. In
contrast, low values of the index of spatial autocorrelation of biomass
at the pixel level (Ilocal) produced low estimates of the component of
uncertainty from spatial autocorrelation.

In general, the spatial resolution of remote sensing analyses should
not be finer than the size of the field plots used to calibrate the remote
sensing (Næsset, 2002). The small magnitude of the differences
between our 25 m and 31.8 m analyses (Table 6) suggests that results
can be similar over a small range of spatial resolutions, as previously
demonstrated (Zhao et al., 2009).

Calculation of forest carbon densities at the level of the research area
produced considerably lower estimates of uncertainty than estimates
calculated pixel-by-pixel. Mean uncertainties at the level of the pixel
were high (Lidar Garcia–Mailliard 24%, North Yuba 18%; QuickBird
Garcia–Mailliard 44%, North Yuba 21%) and showed little difference
between 25 m and 31.8 m spatial resolutions. While the 100 carbon
density realizations for each pixel varied considerably, pixel-level
variations tended to cancel each other out when summarized across
the entire research area. Higher uncertainties at the level of the research
area in Mailliard, compared to the larger Garcia area, demonstrate this
effect of large sample sizes on uncertainty. This suggests that the
method that we use is more appropriate to analyses of large sample
sizes, although the relatively small 1 km2 Mailliard Redwoods SNR
provided a sample size sufficient to produce an estimate of uncertainty
of 3%.
4.2. Lidar and QuickBird

The close correlation of biomass to height in Northern California
forests kept Lidar uncertainty low. Regression of field-measured height
in North Yuba against calculated aboveground biomass (Appendix A)
showed high correlation (r=0.99, n=362 trees). As previously
demonstrated (Patenaude et al., 2004), Lidar shows an enhanced
capability to estimate carbon densities in heterogeneous forests where
field measurements alone may not be adequate. In our research areas,
Lidar consistently produced estimates of Clive trees lower than field
estimates, suggesting that Lidar captured a more complete sample of
areas of low tree density than thefield sample,wherewe relocated plots
that had randomly fallen in non-forest areas. Application of the Lidar
biomass regressionequations toNorthernCalifornia forestswith species
composition and canopy structure similar to the Garcia–Mailliard and
North Yuba forests is possible.

The financial expenses of renting an airplane and a Lidar sensor
system and the labor time and technical expertise required for analysis
may render Lidar infeasible formanyusers. The cost of Lidarwould need
to fall before it could be deployed at a large scale, e.g. in national REDD
QuickBird (31.8 m)

Uncertainty n Mean 95% CI Uncertainty n
(%) (pixels) (Mg ha−1) (Mg ha−1) (%) (pixels)

0.9 54,776 68 1.5 2 56,572
3 982 170 9.5 5 949
0.9 55,758 70 1.5 2 57,521
0.6 41,224 140 1.1 0.8 52,019
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programs. NASA ICESat is the only satellite currently in operationwith a
Lidar sensor, although its spatial resolution of 170 m is coarse for many
forestry applications (Boudreau et al., 2008). A satellite Lidar sensor of
finer spatial resolutionwould still require extensivefieldmeasurements
of trees for validation and calibration. A higher density of Lidar shots per
unit area would remove one constraint of our Lidar data, whose sparse
density precluded identification of tree tops and validation against
individual tree measurements.

The application of Lidar technology to topographic mapping and
forestry applications has become widespread. In industrialized
countries, the number of private companies that offer airplane, Lidar,
and data analysis services has grown, ameliorating practical considera-
tions for projects at sub-national scales. Lidar has also been used for
forest carbon estimation in the Brazilian Amazon (Asner, 2009). Still,
Lidar cannot sense through clouds, so the cloud cover of tropical forest
areas remains a constraint.

QuickBird produced estimates of forest carbon density that were
lower and estimates of uncertainty that were higher than Lidar for
each research area. One source of the difference was the use of stand-
level metrics from Lidar, in contrast to individual tree dimensions
from QuickBird. Delineation of individual trees (QuickBird) proved
more difficult to accomplish than estimation of stand-level heights
(Lidar). QuickBird estimates of tree density were one-half (Garcia–
Mailliard) to one-quarter (North Yuba) of the densities of trees of
dbh≥19.5 cm in the field plots. This suggests a systematic undercount
of trees and underestimation of carbon density, despite uncertainties
Fig. 7. QuickBird satellite image at North Yuba plot B4. (a) Panchromatic image, 150 m×150
Orange circles are tree crowns delineated by the automated detection algorithm, which omitt
spatial resolution. (c) Photograph taken approximately from the red dot in (b) and looking no
red fir (Abies magnifica).
of carbon density estimates as low as 1%. QuickBird forest carbon
estimates were precise, but inaccurate.

The problems with QuickBird data arose from the great height and
high density of the trees in Northern California forests. These conditions
produced shadows up to 25 m long that often obscured any regular
patterns of bright crown tops and dark crown perimeters. The con-
ditions also created some anomalous areas of brightness at locations
other than crown tops. The shadows and anomalous bright areas
hindered the ability of the automated crown detection algorithm to
accurately locate crown tops, trace crown perimeters, or locate trees
with relatively smaller crowns (Fig. 7). Pixel-by-pixel differences
between the carbon density estimates from QuickBird and Lidar, as a
fraction of Lidar carbon density, did not vary substantially with slope.
This suggests that topography itself is not the main factor leading to
differences between Lidar and QuickBird, although topography can
contribute to forming the shadows and anomalous bright areas that
challenged the automated crown detection algorithm.

Previous attempts at crown delineation from high-resolution
optical satellites mitigated inter-crown shadow problems through
the completely manual tracing of tree crowns by people (Asner et al.,
2002; Clark et al., 2004). Whereas manual crown delineation may be
possible for research on areas ≤0.5 km2 with hundreds of trees, labor
and time requirements rendered manual interpretation infeasible for
our operational tests on areas N50 km2 with hundreds of thousands of
trees. In addition, a person may not be able to reliably assess the small
changes in pixel brightness associated with the precise edge of a tree
m, 0.6 m spatial resolution. The red circle is the 17.95 m radius central annular field plot.
ed numerous trees in the area. (b) Panchromatic-sharpenedmulti-spectral image, 0.6 m
rtheast, 10 days before acquisition of the QuickBird image. The dominant tree species is
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crown. Maintaining consistency of interpretation among different
people could prove challenging. Despite the intensive attention
represented by manual interpretation, merging of small tree crowns
in images and missed detection of understory trees can introduce
significant inaccuracies (Asner et al., 2002).

Automated crown detection approaches decrease the labor and time
requirements of image analysis and can increase analytical accuracy
(Culvenor, 2002; Gougeon, 1995; Lowell, 1998; Palace et al., 2008). Our
test, however, confirmspreviously observedproblemswith inter-crown
shadows in high-resolution satellite images (Asner & Warner, 2003;
Wulder et al., 2004) and with missed detection of understory trees
(Broadbent et al., 2008). Moreover, accuracy of automated methods
varies with sensor and solar angle (Wulder et al., 2004). Consequently,
automated methods require image-by-image customization, further
increasing processing time. In our tests, a ratio of crown diameter to
image spatial resolution of approximately 15:1 (9 m crown/0.6 m
image) or higher provided adequate crown detection, but numerous
trees of smaller crown diameter remained undetected. Satellite
acquisition at times of high solar angle could partially mitigate inter-
crown shadow problems. Despite the crown detection difficulties,
acquisition of data from QuickBird and other high-resolution satellites
remains logistically simpler than Lidar data acquisition.

In addition to providing robust estimates of forest carbon density,
the methods that we tested, combining field measurements, remote
sensing, and Monte Carlo analysis, produced wall-to-wall spatial data
layers of forest carbon. Wall-to-wall spatial data derived from remote
sensing can show planners of forest carbon projects the spatial
distribution of carbon and facilitate the targeting of forest conserva-
tion actions.

4.3. Forest carbon densities

Field measurements revealed that red fir forest contains the
highest densities of carbon and the lowest densities of trees in North
Yuba. This reflects the high proportion of old-growth trees in red fir
forest, in contrast to mixed oak and Douglas-fir forest, which had the
highest tree densities and lowest carbon densities.

We found carbon densities in old-growth coast redwood forest, old-
growth Sierra Nevada red fir, and old-growth Sierra Nevada mixed
conifer (Table 4) that substantially exceed the average forest carbon
densities of FIA plots in these California forest types (Christensen et al.,
2008) and are at the high endof the range for old-growth stands in these
California forest types (Hudiburg et al., 2009). Aboveground carbon
densities of old-growth coast redwood forest and Sierra Nevada forest
(Table 4) equal or exceed the aboveground carbon densities of 100–
190 Mg ha−1 in Amazon rainforest (Baker et al., 2004) and Congo
rainforest (Zhang & Justice, 2001) and average aboveground carbon
densities of all major forest types around the world (Aalde et al., 2006).
Based on Lidar results, we estimate (mean±CI) that Garcia–Mailliard
contains450,000±3800 t of carbon andNorthYuba contains590,000±
3300 t of carbon. Together these forests store an amount of carbon
equivalent to the annual greenhouse gas emissions (U.S. Department of
Energy, 2008) of a U.S. city of approximately 160,000 people.

5. Conclusions

Using Lidar, QuickBird, and field measurements, we have shown
that:

1. Airborne Lidar provides forest carbon estimates with lower
uncertainty and higher accuracy than QuickBird high-resolution
satellite data.

2. Monte Carlo analyses of uncertainties from field measurements,
remote sensing accuracy, regression equations, and spatial auto-
correlation can reduce the uncertainty of forest carbon density
estimates to levels lower than published forest inventory carbon
estimates.

3. A method that combines field measurements, Lidar, and Monte
Carlo analysis can produce wall-to-wall spatial data layers and
robust estimates of forest carbon.

4. Sierra Nevada and coast redwood forests in California contain
carbon at densities as high or higher than tropical rainforest.
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